Search results

Search for "biomimetic synthesis" in Full Text gives 22 result(s) in Beilstein Journal of Organic Chemistry.

Total synthesis: an enabling science

  • Bastien Nay

Beilstein J. Org. Chem. 2023, 19, 474–476, doi:10.3762/bjoc.19.36

Graphical Abstract
  • (biomimetic synthesis) [14]. In addition, total syntheses have also been achieved with enzymes, strengthening the links to biology [15]. Total synthesis is not limited to academic laboratories but rather also pursued in industry, where a particular efficiency and economy of tasks is of paramount importance
PDF
Album
Editorial
Published 19 Apr 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • review highlights recent total syntheses that incorporate the best of both worlds. Keywords: biomimetic synthesis; cascades; common scaffold; hydrogen atom transfer; photoredox catalysis; Introduction Societal needs push sciences into new directions, as the urge for new pharmaceutical leads grows, in
PDF
Album
Review
Published 02 Jan 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • intermediate is depicted in Scheme 28). Quinone derivatives could also be generated in situ by anodic oxidation of phenolic compounds. An example of such process is the electrocatalytic biomimetic synthesis of secondary amines by o-azaquinone catalysis [130] (Scheme 29). Under anodic oxidation conditions imine
PDF
Album
Perspective
Published 09 Dec 2022

Synthesis of (−)-halichonic acid and (−)-halichonic acid B

  • Keith P. Reber and
  • Emma L. Niner

Beilstein J. Org. Chem. 2022, 18, 1629–1635, doi:10.3762/bjoc.18.174

Graphical Abstract
  • derived from a common biosynthetic pathway starting from farnesyl pyrophosphate and glycine [5]. This prompted us to investigate a biomimetic synthesis in which the halichonic acids could be prepared from a common imine intermediate via divergent intramolecular aza-Prins cyclizations [8]. Herein, we
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2022

Solid-phase total synthesis and structural confirmation of antimicrobial longicatenamide A

  • Takumi Matsumoto,
  • Takefumi Kuranaga,
  • Yuto Taniguchi,
  • Weicheng Wang and
  • Hideaki Kakeya

Beilstein J. Org. Chem. 2022, 18, 1560–1566, doi:10.3762/bjoc.18.166

Graphical Abstract
  • chemical communication. The retrosynthesis of peptide 1 is displayed in Scheme 1. First, the cyclic peptide 1 was linearized by retrosynthesis, and acid-labile protecting groups were attached onto the reactive side chain. The biomimetic synthesis of cyclic peptides often enables efficient synthesis [12][13
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Make or break: the thermodynamic equilibrium of polyphosphate kinase-catalysed reactions

  • Michael Keppler,
  • Sandra Moser,
  • Henning J. Jessen,
  • Christoph Held and
  • Jennifer N. Andexer

Beilstein J. Org. Chem. 2022, 18, 1278–1288, doi:10.3762/bjoc.18.134

Graphical Abstract
  • ). As discussed before, the conversion of a nucleotide diphosphate to the corresponding triphosphate is normally the last step in the biomimetic synthesis of NTPs, and might have a substantial influence on the yield of the whole cascade. A biomimetic cascade published by Whitesides and co-workers for
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2022

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
  • key intermediate in the biomimetic synthesis of natural alkaloids. Interestingly, amino allylation of 5-bromopentanal (114) with (R)-tert-butanesulfinamide and allyl bromide (113, R = H) in the presence of indium metal gave homoallylamine derivative 115. In this transformation, imine (RS)-109 is a
PDF
Album
Review
Published 12 May 2021

The biomimetic synthesis of balsaminone A and ellagic acid via oxidative dimerization

  • Sharna-kay Daley and
  • Nadale Downer-Riley

Beilstein J. Org. Chem. 2020, 16, 2026–2031, doi:10.3762/bjoc.16.169

Graphical Abstract
  • Sharna-kay Daley Nadale Downer-Riley Department of Chemistry, The University of the West Indies, Mona, Jamaica 10.3762/bjoc.16.169 Abstract The application of oxidative dimerization for the biomimetic synthesis of balsaminone A and ellagic acid is described. Balsaminone A is synthesized via the
  • oxidative dimerization of 1,2,4-trimethoxynaphthalene under anhydrous conditions using CAN, PIDA in BF3·OEt2 or PIFA in BF3·OEt2 in 7–8% yields over 3 steps. Ellagic acid is synthesized from its biosynthetic precursor gallic acid, in 83% yield over 2 steps. Keywords: balsaminone A; biomimetic synthesis
  • ]. There are many important applications of oxidative dimerization reactions, one of which is the direct synthesis of natural product scaffolds [1][7][16][17][18]. Examples of this application include the biomimetic synthesis of the bioactive natural products bismurrayaquinone A (1) [16], parvistemin A (2
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2020

Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering

  • Eric J. N. Helfrich,
  • Geng-Min Lin,
  • Christopher A. Voigt and
  • Jon Clardy

Beilstein J. Org. Chem. 2019, 15, 2889–2906, doi:10.3762/bjoc.15.283

Graphical Abstract
  • their chaperone-like properties [102][103][104]. Unlike the generation of hydrocarbon backbones in nature, even the biomimetic synthetic construction of terpene scaffolds is usually a multistep process [17]. The second phase of a biomimetic synthesis, in analogy to terpene biosynthesis, involves the
PDF
Album
Supp Info
Review
Published 29 Nov 2019

Synthesis and biological investigation of (+)-3-hydroxymethylartemisinin

  • Toni Smeilus,
  • Farnoush Mousavizadeh,
  • Johannes Krieger,
  • Xingzhao Tu,
  • Marcel Kaiser and
  • Athanassios Giannis

Beilstein J. Org. Chem. 2019, 15, 567–570, doi:10.3762/bjoc.15.51

Graphical Abstract
  • not show any toxicity against L6 cells (a primary cell line derived from rat skeletal myoblasts). These results contribute to a better understanding of artemisinins mechanism of action. Keywords: artemisinin; biomimetic synthesis; Diels–Alder reaction; malaria; peroxides; Introduction The isolation
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Oxidative radical ring-opening/cyclization of cyclopropane derivatives

  • Yu Liu,
  • Qiao-Lin Wang,
  • Zan Chen,
  • Cong-Shan Zhou,
  • Bi-Quan Xiong,
  • Pan-Liang Zhang,
  • Chang-An Yang and
  • Quan Zhou

Beilstein J. Org. Chem. 2019, 15, 256–278, doi:10.3762/bjoc.15.23

Graphical Abstract
  • (Scheme 41). In 2015, Tyagi’s group presented a biomimetic synthesis of metabolite 149 from intermediate 148 by using catalytic vanadyl acetylacetonate and molecular O2 (Scheme 42) [122]. The transformation went through aerobic oxidation ring-opening of cyclopropanols. The results showed that the oxygen
PDF
Album
Review
Published 28 Jan 2019

Biomimetic synthesis and HPLC–ECD analysis of the isomers of dracocephins A and B

  • Viktor Ilkei,
  • András Spaits,
  • Anita Prechl,
  • Áron Szigetvári,
  • Zoltán Béni,
  • Miklós Dékány,
  • Csaba Szántay Jr,
  • Judit Müller,
  • Árpád Könczöl,
  • Ádám Szappanos,
  • Attila Mándi,
  • Sándor Antus,
  • Ana Martins,
  • Attila Hunyadi,
  • György Tibor Balogh,
  • György Kalaus (†),
  • Hedvig Bölcskei,
  • László Hazai and
  • Tibor Kurtán

Beilstein J. Org. Chem. 2016, 12, 2523–2534, doi:10.3762/bjoc.12.247

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2016

Useful access to enantiomerically pure protected inositols from carbohydrates: the aldohexos-5-uloses route

  • Felicia D’Andrea,
  • Giorgio Catelani,
  • Lorenzo Guazzelli and
  • Venerando Pistarà

Beilstein J. Org. Chem. 2016, 12, 2343–2350, doi:10.3762/bjoc.12.227

Graphical Abstract
  • followed by reduction with NaBH(OAc)3) represents the biomimetic synthesis of myo-inositol. Furthermore, the sugar-based pathway leads directly to enantiomerically pure selectively protected inositols and does not require any desymmetrisation procedure which is needed when myo-inositol and other achiral
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2016

SmI2-mediated dimerization of indolylbutenones and synthesis of the myxobacterial natural product indiacen B

  • Nils Marsch,
  • Peter G. Jones and
  • Thomas Lindel

Beilstein J. Org. Chem. 2015, 11, 1700–1706, doi:10.3762/bjoc.11.184

Graphical Abstract
  • . Conclusion Indole derivatives prenylated at the benzene section could become important for the biomimetic synthesis of dimeric natural products such as the raputindoles from the plant Raputia simulans. Characteristically, the three enamine positions of the indole moieties of the raputindoles are
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2015

Pyridinoacridine alkaloids of marine origin: NMR and MS spectral data, synthesis, biosynthesis and biological activity

  • Louis P. Sandjo,
  • Victor Kuete and
  • Maique W. Biavatti

Beilstein J. Org. Chem. 2015, 11, 1667–1699, doi:10.3762/bjoc.11.183

Graphical Abstract
  • structures is further discussed. Moreover, the biosynthetic pathways of some of these metabolites have been shown since they could inspire biomimetic synthesis. The synthesis routes used to prepare members of these marine alkaloids (as well as their analogues), which are synthesized for biological purposes
PDF
Album
Review
Published 18 Sep 2015

Selected synthetic strategies to cyclophanes

  • Sambasivarao Kotha,
  • Mukesh E. Shirbhate and
  • Gopalkrushna T. Waghule

Beilstein J. Org. Chem. 2015, 11, 1274–1331, doi:10.3762/bjoc.11.142

Graphical Abstract
PDF
Album
Review
Published 29 Jul 2015

Heronapyrrole D: A case of co-inspiration of natural product biosynthesis, total synthesis and biodiscovery

  • Jens Schmidt,
  • Zeinab Khalil,
  • Robert J. Capon and
  • Christian B. W. Stark

Beilstein J. Org. Chem. 2014, 10, 1228–1232, doi:10.3762/bjoc.10.121

Graphical Abstract
  • : biomimetic synthesis; biosynthesis; heronapyrroles; microbial biodiscovery; natural products; nitropyrroloterpenes; Introduction Heronapyrroles A–C (Figure 1) were first reported in 2010 by Capon et al. from a marine-derived Streptomyces sp. (CMB-M0423) obtained from a shallow water sand sample collected
  • rare class of natural product [22]. The initial discovery of the heronapyrroles A–C [1] prompted a successful biomimetic synthesis of heronapyrrole C [3], which in turn lead to speculation regarding the existence of heronapyrrole D. A biomimetic synthesis of heronapyrrole D was critical to establishing
PDF
Album
Supp Info
Letter
Published 26 May 2014

The chemistry of isoindole natural products

  • Klaus Speck and
  • Thomas Magauer

Beilstein J. Org. Chem. 2013, 9, 2048–2078, doi:10.3762/bjoc.9.243

Graphical Abstract
  • reported, which were reviewed by Hertweck and Bräse [44][58]. In line with the focus on the construction of the isoindole component, one can identify the Diels–Alder reaction as the most popular strategy. A linear, biomimetic synthesis using a late stage intramolecular Diels–Alder reaction was implemented
PDF
Album
Video
Review
Published 10 Oct 2013

Bioinspired total synthesis of katsumadain A by organocatalytic enantioselective 1,4-conjugate addition

  • Yongguang Wang,
  • Ruiyang Bao,
  • Shengdian Huang and
  • Yefeng Tang

Beilstein J. Org. Chem. 2013, 9, 1601–1606, doi:10.3762/bjoc.9.182

Graphical Abstract
  • observed. The best result was obtained when the reaction was performed with a substoichiometric amount of catalyst A with MeOH as a solvent, in which katsumadain A and B were isolated in a 5:6 ratio with a combined yield of 33% (Scheme 2). With limited success regarding the the biomimetic synthesis of
  • acetate = 20:1) to give 5a (284 mg, 82% yield) as a light yellow solid. Proposed biosynthetic pathway and strategic analysis for synthesis of katsumadain A. Preliminary results of the biomimetic synthesis of katsumadain A. Total synthesis of both enantiomers of katsumadain A. Condition screening of
PDF
Album
Supp Info
Letter
Published 06 Aug 2013

Methylidynetrisphosphonates: Promising C1 building block for the design of phosphate mimetics

  • Vadim D. Romanenko and
  • Valery P. Kukhar

Beilstein J. Org. Chem. 2013, 9, 991–1001, doi:10.3762/bjoc.9.114

Graphical Abstract
  • , structure, reactions, and potential medicinal applications of these compounds. Keywords: biomimetic synthesis; C1 building blocks; phosphorylation; polyphosphonates; synthetic methods; Introduction Methylidynetrisphosphonic acid, HC(PO3H2)3, or more commonly methylidynetrisphosphonates, XC(PO3R2)3, also
PDF
Album
Review
Published 24 May 2013

Peptides presenting the binding site of human CD4 for the HIV-1 envelope glycoprotein gp120

  • Julia Meier,
  • Kristin Kassler,
  • Heinrich Sticht and
  • Jutta Eichler

Beilstein J. Org. Chem. 2012, 8, 1858–1866, doi:10.3762/bjoc.8.214

Graphical Abstract
  • -amino acids. Keywords: biomimetic synthesis; CD4; HIV entry; peptide; protein binding site; Introduction Synthetic molecules that have the ability to mimic binding and/or functional sites of proteins are useful tools for exploring and modulating protein function, as they interfere with binding events
PDF
Album
Full Research Paper
Published 31 Oct 2012

An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

  • Grazia Marano,
  • Claas Gronewold,
  • Martin Frank,
  • Anette Merling,
  • Christian Kliem,
  • Sandra Sauer,
  • Manfred Wiessler,
  • Eva Frei and
  • Reinhard Schwartz-Albiez

Beilstein J. Org. Chem. 2012, 8, 787–803, doi:10.3762/bjoc.8.89

Graphical Abstract
  • (hydroxymethyl)furan and benzoylated galactose imidate, is nontoxic and antagonizes cell physiological processes in vitro that are important for the dissemination and growth of tumor cells in vivo. Keywords: angiogenesis; biomimetic synthesis; carbohydrates; in silico blind docking; melanoma cells
PDF
Album
Full Research Paper
Published 29 May 2012
Other Beilstein-Institut Open Science Activities